This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
NoufAlShenaifi
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
As social media usage continues to rise, the demand for systems to analyze opinions and sentiments expressed in textual data has become more critical. This paper presents our submission to the Stance Detection in Arabic Language Shared Task, in which we evaluated three models: the fine-tuned MARBERT Transformer, the fine-tuned AraBERT Transformer, and an Ensemble of Machine learning Classifiers. Our findings indicate that the MARBERT Transformer outperformed the other models in performance across all targets. In contrast, the Ensemble Classifier, which combines traditional machine learning techniques, demonstrated relatively lower effectiveness.
Arabic has a wide range of dialects. Dialect is the language variation of a specific community. In this paper, we show the models we created to participate in the third Nuanced Arabic Dialect Identification (NADI) shared task (Subtask 1) that involves developing a system to classify a tweet into a country-level dialect. We utilized a number of machine learning techniques as well as deep learning transformer-based models. For the machine learning approach, we build an ensemble classifier of various machine learning models. In our deep learning approach, we consider bidirectional LSTM model and AraBERT pretrained model. The results demonstrate that the deep learning approach performs noticeably better than the other machine learning approaches with 68.7% accuracy on the development set.
This paper describes Faheem (adj. of understand), our submission to NADI (Nuanced Arabic Dialect Identification) shared task. With so many Arabic dialects being under-studied due to the scarcity of the resources, the objective is to identify the Arabic dialect used in the tweet, country wise. We propose a machine learning approach where we utilize word-level n-gram (n = 1 to 3) and tf-idf features and feed them to six different classifiers. We train the system using a data set of 21,000 tweets—provided by the organizers—covering twenty-one Arab countries. Our top performing classifiers are: Logistic Regression, Support Vector Machines, and Multinomial Na ̈ıve Bayes.