Noopur Bhatt


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
CodeSCM: Causal Analysis for Multi-Modal Code Generation
Mukur Gupta | Noopur Bhatt | Suman Jana
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

In this paper, we propose CodeSCM, a Structural Causal Model (SCM) for analyzing multi-modal code generation using large language models (LLMs). By applying interventions to CodeSCM, we measure the causal effects of different prompt modalities, such as natural language, code, and input-output examples, on the model. CodeSCM introduces latent mediator variables to separate the code and natural language semantics of a multi-modal code generation prompt. Using the principles of Causal Mediation Analysis on these mediators we quantify direct effects representing the model’s spurious leanings. We find that, in addition to natural language instructions, input-output examples significantly influence code generation.