Nkonye Gbadegoye


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
SIGMORPHON 2022 Task 0 Submission Description: Modelling Morphological Inflection with Data-Driven and Rule-Based Approaches
Tatiana Merzhevich | Nkonye Gbadegoye | Leander Girrbach | Jingwen Li | Ryan Soh-Eun Shim
Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper describes our participation in the 2022 SIGMORPHON-UniMorph Shared Task on Typologically Diverse and AcquisitionInspired Morphological Inflection Generation. We present two approaches: one being a modification of the neural baseline encoderdecoder model, the other being hand-coded morphological analyzers using finite-state tools (FST) and outside linguistic knowledge. While our proposed modification of the baseline encoder-decoder model underperforms the baseline for almost all languages, the FST methods outperform other systems in the respective languages by a large margin. This confirms that purely data-driven approaches have not yet reached the maturity to replace trained linguists for documentation and analysis especially considering low-resource and endangered languages.