This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
NitishaAggarwal
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Misogyny has become a pervasive issue in digital spaces. Misleading gender stereotypes are getting communicated through digital content.This content is majorly displayed as a text-and-image memes. With the growing prevalence of online content, it is essential to develop automated systems capable of detecting such harmful content to ensure safer online environments. This study focuses on the detection of misogynistic memes in two Dravidian languages, Tamil and Malayalam. The proposed model utilizes a pre-trained XLM-RoBERTa (XLM-R) model for text analysis and a Vision Transformer (ViT) for image feature extraction. A custom neural network classifier was trained on integrating the outputs of both modalities to form a unified representation. This model predicts whether the meme represents misogyny or not. This follows an early-fusion strategy since features of both modalities are combined before feeding into the classification model. This approach achieved promising results using a macro F1-score of 0.84066 on the Malayalam test dataset and 0.68830 on the Tamil test dataset. In addition, it is worth noting that this approach secured Rank 7 and 11 in Malayalam and Tamil classification respectively in the shared task of Misogyny Meme Detection (MMD). The findings demonstrate that the multimodal approach significantly enhances the accuracy of detecting misogynistic content compared to text-only or image-only models.
Hate speech has emerged as a pressing issue on social media platforms, fueled by the increasing availability of multimodal data and easy internet access. Addressing this problem requires collaborative efforts from researchers, policymakers, and online platforms. In this study, we investigate the detection of hate speech in multimodal data, comprising text-embedded images, by employing advanced deep learning models. The main objective is to identify effective strategies for hate speech detection and content moderation. We conducted experiments using four state-of-the-art classifiers: XLM-Roberta-base, BiLSTM, XLNet base cased, and ALBERT, on the CrisisHateMM[4] dataset, consisting of over 4700 text-embedded images related to the Russia-Ukraine conflict. The best findings reveal that XLM-Roberta-base exhibits superior performance, outperforming other classifiers across all evaluation metrics, including an impressive F1 score of 84.62 for sub-task 1 and 69.73 for sub-task 2. The future scope of this study lies in exploring multimodal approaches to enhance hate speech detection accuracy, integrating ethical considerations to address potential biases, promoting fairness, and safeguarding user rights. Additionally, leveraging larger and more diverse datasets will contribute to developing more robust and generalised hate speech detection solutions.
Depression is a prevalent mental illness characterized by feelings of sadness and a lack of interest in daily activities. Early detection of depression is crucial to prevent severe consequences, making it essential to observe and treat the condition at its onset. At ACL-2022, the DepSign-LT-EDI project aimed to identify signs of depression in individuals based on their social media posts, where people often share their emotions and feelings. Using social media postings in English, the system categorized depression signs into three labels: “not depressed,” “moderately depressed,” and “severely depressed.” To achieve this, our team has applied MentalRoBERTa, a model trained on big data of mental health. The test results indicated a macro F1-score of 0.439, ranking the fourth in the shared task.