Niraj Pahari


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Language Preference for Expression of Sentiment for Nepali-English Bilingual Speakers on Social Media
Niraj Pahari | Kazutaka Shimada
Proceedings of the 6th Workshop on Computational Approaches to Linguistic Code-Switching

Nepali-English code-switching (CS) has been a growing phenomenon in Nepalese society, especially in social media. The code-switching text can be leveraged to understand the socio-linguistic behaviours of the multilingual speakers. Existing studies have attempted to identify the language preference of the multilingual speakers for expressing different emotions using text in different language pairs. In this work, we aim to study the language preference of multilingual Nepali-English CS speakers while expressing sentiment in social media. We create a novel dataset for sentiment analysis using the public Nepali-English code-switched comments in YouTube. After performing the statistical study on the dataset, we find that the proportion of use of Nepali language is higher in negative comments when compared with positive comments, hence concluding the preference for using native language while expressing negative sentiment. Machine learning and transformer-based models are used as the baseline models for the dataset for sentiment classification. The dataset is released publicly.