Nina Delcaro


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Predict but Also Integrate: an Analysis of Sentence Processing Models for English and Hindi
Nina Delcaro | Luca Onnis | Raquel Alhama
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

Fluent speakers make implicit predictions about forthcoming linguistic items while processing sentences, possibly to increase efficiency in real-time comprehension. However, the extent to which prediction is the primary mode of processing human language is widely debated. The human language processor may also gain efficiency by integrating new linguistic information with prior knowledge and the preceding context, without actively predicting. At present, the role of probabilistic integration, as well as its computational foundation, remains relatively understudied. Here, we explored whether a Delayed Recurrent Neural Network (d-RNN, Turek et al., 2020), as an implementation of both prediction and integration, can explain patterns of human language processing over and above the contribution of a purely predictive RNN model. We found that incorporating integration contributes to explaining variability in eye-tracking data for English and Hindi.