Nina Christine Hubig


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MathBuddy: A Multimodal System for Affective Math Tutoring
Debanjana Kar | Leopold Böss | Dacia Braca | Sebastian Maximilian Dennerlein | Nina Christine Hubig | Philipp Wintersberger | Yufang Hou
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

The rapid adoption of LLM-based conversational systems is already transforming the landscape of educational technology. However, the current state-of-the-art learning models do not take into account the student’s affective states. Multiple studies in educational psychology support the claim that positive or negative emotional states can impact a student’s learning capabilities. To bridge this gap, we present MathBuddy, an emotionally aware LLM-powered Math Tutor, which dynamically models the student’s emotions and maps them to relevant pedagogical strategies, making the tutor-student conversation a more empathetic one. The student’s emotions are captured from the conversational text as well as from their facial expressions. The student’s emotions are aggregate from both modalities to confidently prompt our LLM Tutor for an emotionally-aware response. We have evaluated our model using automatic evaluation metrics across eight pedagogical dimensions and user studies. We report a massive 23 point performance gain using the win rate and a 3 point gain at an overall level using DAMR scores which strongly supports our hypothesis of improving LLM-based tutor’s pedagogical abilities by modeling students’ emotions. Our dataset and code are available at: https://github.com/ITU-NLP/MathBuddy.