Nimshi Venkat Meripo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Extracting Appointment Spans from Medical Conversations
Nimshi Venkat Meripo | Sandeep Konam
Proceedings of the Second Workshop on Natural Language Processing for Medical Conversations

Extracting structured information from medical conversations can reduce the documentation burden for doctors and help patients follow through with their care plan. In this paper, we introduce a novel task of extracting appointment spans from medical conversations. We frame this task as a sequence tagging problem and focus on extracting spans for appointment reason and time. However, annotating medical conversations is expensive, time-consuming, and requires considerable domain expertise. Hence, we propose to leverage weak supervision approaches, namely incomplete supervision, inaccurate supervision, and a hybrid supervision approach and evaluate both generic and domain-specific, ELMo, and BERT embeddings using sequence tagging models. The best performing model is the domain-specific BERT variant using weak hybrid supervision and obtains an F1 score of 79.32.