Nils Kemmerzell


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Disentangling the Linguistic Competence of Privacy-Preserving BERT
Stefan Arnold | Nils Kemmerzell | Annika Schreiner
Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

Differential Privacy (DP) has been tailored to address the unique challenges of text-to-text privatization. However, text-to-text privatization is known for degrading the performance of language models when trained on perturbed text. Employing a series of interpretation techniques on the internal representations extracted from BERT trained on perturbed pre-text, we intend to disentangle at the linguistic level the distortion induced by differential privacy. Experimental results from a representational similarity analysis indicate that the overall similarity of internal representations is substantially reduced. Using probing tasks to unpack this dissimilarity, we find evidence that text-to-text privatization affects the linguistic competence across several formalisms, encoding localized properties of words while falling short at encoding the contextual relationships between spans of words.