Nils Constantin Hellwig


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
German Aspect-based Sentiment Analysis in the Wild: B2B Dataset Creation and Cross-Domain Evaluation
Jakob Fehle | Niklas Donhauser | Udo Kruschwitz | Nils Constantin Hellwig | Christian Wolff
Proceedings of the 21st Conference on Natural Language Processing (KONVENS 2025): Long and Short Papers

pdf bib
Do we still need Human Annotators? Prompting Large Language Models for Aspect Sentiment Quad Prediction
Nils Constantin Hellwig | Jakob Fehle | Udo Kruschwitz | Christian Wolff
Proceedings of the 1st Joint Workshop on Large Language Models and Structure Modeling (XLLM 2025)

Aspect sentiment quad prediction (ASQP) facilitates a detailed understanding of opinions expressed in a text by identifying the opinion term, aspect term, aspect category and sentiment polarity for each opinion. However, annotating a full set of training examples to fine-tune models for ASQP is a resource-intensive process. In this study, we explore the capabilities of large language models (LLMs) for zero- and few-shot learning on the ASQP task across five diverse datasets. We report F1 scores almost up to par with those obtained with state-of-the-art fine-tuned models and exceeding previously reported zero- and few-shot performance. In the 20-shot setting on the Rest16 restaurant domain dataset, LLMs achieved an F1 score of 51.54, compared to 60.39 by the best-performing fine-tuned method MVP. Additionally, we report the performance of LLMs in target aspect sentiment detection (TASD), where the F1 scores were close to fine-tuned models, achieving 68.93 on Rest16 in the 30-shot setting, compared to 72.76 with MVP. While human annotators remain essential for achieving optimal performance, LLMs can reduce the need for extensive manual annotation in ASQP tasks.

2024

pdf bib
GERestaurant: A German Dataset of Annotated Restaurant Reviews for Aspect-Based Sentiment Analysis
Nils Constantin Hellwig | Jakob Fehle | Markus Bink | Christian Wolff
Proceedings of the 20th Conference on Natural Language Processing (KONVENS 2024)

2023

pdf bib
Transformer-Based Analysis of Sentiment Towards German Political Parties on Twitter During the 2021 Election Year
Nils Constantin Hellwig | Markus Bink | Thomas Schmidt | Jakob Fehle | Christian Wolff
Proceedings of the 6th International Conference on Natural Language and Speech Processing (ICNLSP 2023)