Nikolay Dolgov


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
How to Compare Things Properly? A Study of Argument Relevance in Comparative Question Answering
Irina Nikishina | Saba Anwar | Nikolay Dolgov | Maria Manina | Daria Ignatenko | Artem Shelmanov | Chris Biemann
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Comparative Question Answering (CQA) lies at the intersection of Question Answering, Argument Mining, and Summarization. It poses unique challenges due to the inherently subjective nature of many questions and the need to integrate diverse perspectives. Although the CQA task can be addressed using recently emerged instruction-following Large Language Models (LLMs), challenges such as hallucinations in their outputs and the lack of transparent argument provenance remain significant limitations.To address these challenges, we construct a manually curated dataset comprising arguments annotated with their relevance. These arguments are further used to answer comparative questions, enabling precise traceability and faithfulness. Furthermore, we define explicit criteria for an “ideal” comparison and introduce a benchmark for evaluating the outputs of various Retrieval-Augmented Generation (RAG) models with respect to argument relevance. All code and data are publicly released to support further research.