Nikolaos Kolitsas


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
End-to-End Neural Entity Linking
Nikolaos Kolitsas | Octavian-Eugen Ganea | Thomas Hofmann
Proceedings of the 22nd Conference on Computational Natural Language Learning

Entity Linking (EL) is an essential task for semantic text understanding and information extraction. Popular methods separately address the Mention Detection (MD) and Entity Disambiguation (ED) stages of EL, without leveraging their mutual dependency. We here propose the first neural end-to-end EL system that jointly discovers and links entities in a text document. The main idea is to consider all possible spans as potential mentions and learn contextual similarity scores over their entity candidates that are useful for both MD and ED decisions. Key components are context-aware mention embeddings, entity embeddings and a probabilistic mention - entity map, without demanding other engineered features. Empirically, we show that our end-to-end method significantly outperforms popular systems on the Gerbil platform when enough training data is available. Conversely, if testing datasets follow different annotation conventions compared to the training set (e.g. queries/ tweets vs news documents), our ED model coupled with a traditional NER system offers the best or second best EL accuracy.