This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
NihelKooli
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Word embeddings intervene in a wide range of natural language processing tasks. These geometrical representations are easy to manipulate for automatic systems. Therefore, they quickly invaded all areas of language processing. While they surpass all predecessors, it is still not straightforward why and how they do so. In this article, we propose to investigate all kind of evaluation metrics on various datasets in order to discover how they correlate with each other. Those correlations lead to 1) a fast solution to select the best word embeddings among many others, 2) a new criterion that may improve the current state of static Euclidean word embeddings, and 3) a way to create a set of complementary datasets, i.e. each dataset quantifies a different aspect of word embeddings.
Cet article propose une approche d’analyse de sentiments à base d’aspects dans un texte d’opinion. Cette approche se base sur deux étapes principales : l’extraction d’aspects et la classification du sentiment relatif à chaque aspect. Pour l’extraction d’aspects, nous proposons une nouvelle approche qui combine un CNN pour l’apprentissage de représentation de caractères, un b-LSTM pour joindre l’apprentissage de représentation de caractères et de mots et un CRF pour l’étiquetage des séquences de mots en entités. Pour la classification de sentiments, nous utilisons un réseau à mémoire d’attention pour associer un sentiment (positif, négatif ou neutre) à une expression d’aspect donnée. Les expérimentations sur des corpus d’avis (publics et industriels) en langue française ont montré des performances qui dépassent les méthodes existantes.