This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
NihalJain
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Recent advancements in code completion models have primarily focused on local file contexts. However, these studies do not fully capture the complexity of real-world software development, which often requires the use of rapidly-evolving public libraries. To address this gap, we introduce LibEvolutionEval, a comprehensive study that emphasizes the need to understand library evolution to perform accurate in-line code completions. LibEvolutionEvaloffers a version-specific code-completion task across eight libraries as they evolve over the years, along with an in-depth analysis of the evolution of two widely used and well-maintained public libraries: PyTorch and Matplotlib. We evaluate several popular models and find that public library evolution significantly affects their performance. To mitigate this, we explored how retrieving version-specific library documentation and prompt-based techniques can enhance model capability in dealing with these fast-evolving packages. This suggests a promising path forward for better handling fast-evolving libraries. Our tasks will be made publicly available upon acceptance.
Despite exciting progress in causal language models, the expressiveness of their representations is largely limited due to poor discrimination ability. To remedy this issue, we present CONTRACLM, a novel contrastive learning framework at both the token-level and the sequence-level. We assess CONTRACLM on a variety of downstream tasks. We show that CONTRACLM enhances the discrimination of representations and bridges the gap with encoder-only models, which makes causal language models better suited for tasks beyond language generation. Specifically, we attain 44% relative improvement on the Semantic Textual Similarity tasks and 34% on Code-to-Code Search tasks. Furthermore, by improving the expressiveness of representations, CONTRACLM also boosts the source code generation capability with 9% relative improvement on execution accuracy on the HumanEval benchmark.