Nicole Stadie


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Modeling Sentence Comprehension Deficits in Aphasia: A Computational Evaluation of the Direct-access Model of Retrieval
Paula Lissón | Dorothea Pregla | Dario Paape | Frank Burchert | Nicole Stadie | Shravan Vasishth
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

Several researchers have argued that sentence comprehension is mediated via a content-addressable retrieval mechanism that allows fast and direct access to memory items. Initially failed retrievals can result in backtracking, which leads to correct retrieval. We present an augmented version of the direct-access model that allows backtracking to fail. Based on self-paced listening data from individuals with aphasia, we compare the augmented model to the base model without backtracking failures. The augmented model shows quantitatively similar performance to the base model, but only the augmented model can account for slow incorrect responses. We argue that the modified direct-access model is theoretically better suited to fit data from impaired populations.