This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
NicolaCancedda
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as “hallucination.” These hallucinations undermine user trust and hinder the adoption of generative AI systems. Addressing hallucinations is important for the advancement of LLMs. This paper introduces a comprehensive hallucination benchmark HalluLens, incorporating both extrinsic and intrinsic evaluation tasks, built upon a clear taxonomy of hallucination. A major challenge in benchmarking hallucinations is the lack of a unified framework due to inconsistent definitions and categorizations. We disentangle LLM hallucination from “factuality” and propose a taxonomy distinguishing extrinsic and intrinsic hallucinations to promote consistency and facilitate research. We emphasize extrinsic hallucinations – where generated content deviates from training data – as they become increasingly relevant with LLM advancements. However, no benchmark is solely dedicated to extrinsic hallucinations. To address this gap, HalluLens introduces three new extrinsic tasks with dynamic test set generation to mitigate data leakage and ensure robustness. We release codebase for extrinsic hallucination benchmark.
LLMs often adopt an assertive language style also when making false claims. Such ”overconfident hallucinations” mislead users and erode trust. Achieving the ability to express in language the actual degree of uncertainty around a claim is therefore of great importance. We find that ”verbal uncertainty” is governed by a single linear feature in the representation space of LLMs, and shows that this has only moderate correlation with the actual ”semantic uncertainty” of the model. We apply this insight and show that (1) the mismatch between semantic and verbal uncertainty is a better predictor of hallucinations than semantic uncertainty alone and (2) we can intervene on verbal uncertainty at inference time and reduce confident hallucinations on short-form answers, achieving an average relative reduction of ~30%.
Projecting intermediate representations onto the vocabulary is an increasingly popular interpretation tool for transformer-based LLMs, also known as the logit lens (Nostalgebraist). We propose a quantitative extension to this approach and define spectral filters on intermediate representations based on partitioning the singular vectors of the vocabulary embedding and unembedding matrices into bands. We find that the signals exchanged in the tail end of the spectrum, i.e. corresponding to the singular vectors with smallest singular values, are responsible for attention sinking (Xiao et al., 2023), of which we provide an explanation. We find that the negative log-likelihood of pretrained models can be kept low despite suppressing sizeable parts of the embedding spectrum in a layer-dependent way, as long as attention sinking is preserved. Finally, we discover that the representation of tokens that draw attention from many tokens have large projections on the tail end of the spectrum, and likely act as additional attention sinks.
In this work, we explicitly show that modern LLMs tend to generate correct facts first, then “drift away” and generate incorrect facts later: this was occasionally observed but never properly measured. We develop a semantic drift score that measures the degree of separation between correct and incorrect facts in generated texts and confirm our hypothesis when generating Wikipedia-style biographies. This correct-then-incorrect generation pattern suggests that factual accuracy can be improved by knowing when to stop generation. Therefore, we explore the trade-off between information quantity and factual accuracy for several early stopping methods and manage to improve factuality by a large margin. We further show that reranking with semantic similarity can further improve these results, both compared to the baseline and when combined with early stopping. Finally, we try calling external API to bring the model back to the right generation path, but do not get positive results. Overall, our methods generalize and can be applied to any long-form text generation to produce more reliable information, by balancing trade-offs between factual accuracy, information quantity and computational cost.
Entity linking methods based on dense retrieval are widely adopted in large-scale applications for their efficiency, but they can fall short of generative models, as they are sensitive to the structure of the embedding space. To address this issue, this paper introduces DUCK, an approach to infusing structural information in the space of entity representations, using prior knowledge of entity types. Inspired by duck typing in programming languages, we define the type of an entity based on its relations with other entities in a knowledge graph. Then, porting the concept of box embeddings to spherical polar coordinates, we represent relations as boxes on the hypersphere. We optimize the model to place entities inside the boxes corresponding to their relations, thereby clustering together entities of similar type. Our experiments show that our method sets new state-of-the-art results on standard entity-disambiguation benchmarks. It improves the performance of the model by up to 7.9 F1 points, outperforms other type-aware approaches, and matches the results of generative models with 18 times more parameters.
Embedding representations of text are useful for downstream natural language processing tasks. Several universal sentence representation methods have been proposed with a particular focus on self-supervised pre-training approaches to leverage the vast quantities of unlabelled data. However, there are two challenges for generating rich embedding representations for a new document. 1) The latest rich embedding generators are based on very large costly transformer-based architectures. 2) The rich embedding representation of a new document is limited to only the information provided without access to any explicit contextual and temporal information that could potentially further enrich the representation. We propose efficient retrieval-augmented text embeddings (ERATE) that tackles the first issue and offers a method to tackle the second issue. To the best of our knowledge, we are the first to incorporate retrieval to general purpose embeddings as a new paradigm, which we apply to the semantic similarity tasks of SentEval. Despite not reaching state-of-the-art performance, ERATE offers key insights that encourages future work into investigating the potential of retrieval-based embeddings.
Existing work on Entity Linking mostly assumes that the reference knowledge base is complete, and therefore all mentions can be linked. In practice this is hardly ever the case, as knowledge bases are incomplete and because novel concepts arise constantly. We introduce the temporally segmented Unknown Entity Discovery and Indexing (EDIN)-benchmark where unknown entities, that is entities not part of the knowledge base and without descriptions and labeled mentions, have to be integrated into an existing entity linking system. By contrasting EDIN with zero-shot entity linking, we provide insight on the additional challenges it poses. Building on dense-retrieval based entity linking, we introduce the end-to-end EDIN-pipeline that detects, clusters, and indexes mentions of unknown entities in context. Experiments show that indexing a single embedding per entity unifying the information of multiple mentions works better than indexing mentions independently.
We present mGENRE, a sequence-to- sequence system for the Multilingual Entity Linking (MEL) problem—the task of resolving language-specific mentions to a multilingual Knowledge Base (KB). For a mention in a given language, mGENRE predicts the name of the target entity left-to-right, token-by-token in an autoregressive fashion. The autoregressive formulation allows us to effectively cross-encode mention string and entity names to capture more interactions than the standard dot product between mention and entity vectors. It also enables fast search within a large KB even for mentions that do not appear in mention tables and with no need for large-scale vector indices. While prior MEL works use a single representation for each entity, we match against entity names of as many languages as possible, which allows exploiting language connections between source input and target name. Moreover, in a zero-shot setting on languages with no training data at all, mGENRE treats the target language as a latent variable that is marginalized at prediction time. This leads to over 50% improvements in average accuracy. We show the efficacy of our approach through extensive evaluation including experiments on three popular MEL benchmarks where we establish new state-of-the-art results. Source code available at https://github.com/facebookresearch/GENRE.
The ability to quickly incorporate incoming training data into a running translation system is critical in a number of applications. Mechanisms based on incremental model update and the online EM algorithm hold the promise of achieving this objective in a principled way. Still, efficient tools for incremental training are yet to be available. In this paper we experiment with simple alternative solutions for interim model updates, within the popular Moses system. Short of updating the model in real time, such updates can execute in short timeframes even when operating on large models, and achieve a performance level close to, and in some cases exceeding, that of batch retraining.
In this paper we explore a task-driven approach to interfacing NLP components, where language processing is guided by the end-task that each application requires. The core idea is to generalize feature values into feature value distributions, representing under-specified feature values, and to fit linguistic pipelines with a back-channel of specification requests through which subsequent components can declare to preceding ones the importance of narrowing the value distribution of particular features that are critical for the current task.
We present a conditional-random-field approach to discriminatively-trained phrase-based machine translation in which training and decoding are both cast in a sampling framework and are implemented uniformly in a new probabilistic programming language for factor graphs. In traditional phrase-based translation, decoding infers both a "Viterbi" alignment and the target sentence. In contrast, in our approach, a rich overlapping-phrase alignment is produced by a fast deterministic method, while probabilistic decoding infers only the target sentence, which is then able to leverage arbitrary features of the entire source sentence, target sentence and alignment. By using SampleRank for learning we could in principle efficiently estimate hundreds of thousands of parameters. Test-time decoding is done by MCMC sampling with annealing. To demonstrate the potential of our approach we show preliminary experiments leveraging alignments that may contain overlapping bi-phrases.
We describe a dataset containing 16,000 translations produced by four machine translation systems and manually annotated for quality by professional translators. This dataset can be used in a range of tasks assessing machine translation evaluation metrics, from basic correlation analysis to training and test of machine learning-based metrics. By providing a standard dataset for such tasks, we hope to encourage the development of better MT evaluation metrics.
Cet article présente une méthode de traduction automatique statistique basée sur des segments non-continus, c’est-à-dire des segments formés de mots qui ne se présentent pas nécéssairement de façon contiguë dans le texte. On propose une méthode pour produire de tels segments à partir de corpus alignés au niveau des mots. On présente également un modèle de traduction statistique capable de tenir compte de tels segments, de même qu’une méthode d’apprentissage des paramètres du modèle visant à maximiser l’exactitude des traductions produites, telle que mesurée avec la métrique NIST. Les traductions optimales sont produites par le biais d’une recherche en faisceau. On présente finalement des résultats expérimentaux, qui démontrent comment la méthode proposée permet une meilleure généralisation à partir des données d’entraînement.