Nicholas Lanuzo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Cross-Lingual Representation Alignment Through Contrastive Image-Caption Tuning
Nathaniel Krasner | Nicholas Lanuzo | Antonios Anastasopoulos
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Multilingual alignment of sentence representations has mostly required bitexts to bridge the gap between languages. We investigate whether visual information can bridge this gap instead. Image caption datasets are very easy to create without requiring multilingual expertise, so this offers a more efficient alternative for low-resource languages. We find that multilingual image-caption alignment can implicitly align the text representations between languages, languages unseen by the encoder in pretraining can be incorporated into this alignment post-hoc, and these aligned representations are usable for cross-lingual Natural Language Understanding (NLU) and bitext retrieval.