Ni Yi Puay


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Twitter Homophily: Network Based Prediction of User’s Occupation
Jiaqi Pan | Rishabh Bhardwaj | Wei Lu | Hai Leong Chieu | Xinghao Pan | Ni Yi Puay
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper, we investigate the importance of social network information compared to content information in the prediction of a Twitter user’s occupational class. We show that the content information of a user’s tweets, the profile descriptions of a user’s follower/following community, and the user’s social network provide useful information for classifying a user’s occupational group. In our study, we extend an existing data set for this problem, and we achieve significantly better performance by using social network homophily that has not been fully exploited in previous work. In our analysis, we found that by using the graph convolutional network to exploit social homophily, we can achieve competitive performance on this data set with just a small fraction of the training data.