Ni Xuanfan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
A Systematic Evaluation of Large Language Models for Natural Language Generation Tasks
Ni Xuanfan | Li Piji
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 2: Frontier Forum)

“Recent efforts have evaluated large language models (LLMs) in areas such as com-monsense reasoning, mathematical reasoning, and code generation. However, to thebest of our knowledge, no work has specifically investigated the performance of LLMsin natural language generation (NLG) tasks, a pivotal criterion for determining modelexcellence. Thus, this paper conducts a comprehensive evaluation of well-known andhigh-performing LLMs, namely ChatGPT, ChatGLM, T5-based models, LLaMA-basedmodels, and Pythia-based models, in the context of NLG tasks. We select English andChinese datasets encompassing Dialogue Generation and Text Summarization. More-over, we propose a common evaluation setting that incorporates input templates andpost-processing strategies. Our study reports both automatic results, accompanied by adetailed analysis.”
Search
Co-authors
Venues
Fix data