Ngoc Dang Nguyen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Hardness-guided domain adaptation to recognise biomedical named entities under low-resource scenarios
Ngoc Dang Nguyen | Lan Du | Wray Buntine | Changyou Chen | Richard Beare
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Domain adaptation is an effective solution to data scarcity in low-resource scenarios. However, when applied to token-level tasks such as bioNER, domain adaptation methods often suffer from the challenging linguistic characteristics that clinical narratives possess, which leads to unsatsifactory performance. In this paper, we present a simple yet effective hardness-guided domain adaptation framework for bioNER tasks that can effectively leverage the domain hardness information to improve the adaptability of the learnt model in the low-resource scenarios. Experimental results on biomedical datasets show that our model can achieve significant performance improvement over the recently published state-of-the-art (SOTA) MetaNER model.