Nellia Dzhubaeva


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Unstructured Minds, Predictable Machines: A Comparative Study of Narrative Cohesion in Human and LLM Stream-of-Consciousness Writing
Nellia Dzhubaeva | Katharina Trinley | Laura Pissani
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

This paper examines differences between stream-of-consciousness (SoC) narratives written by humans and those generated by large language models (LLMs) to assess narrative coherence and personality expression. We generated texts by prompting LLMs (Llama-3.1-8B & DeepSeek-R1-Distill-Llama-8B) with the first half of SoC-essays while either providing the models with the personality characteristics (Big Five) or omitting them. Our analysis revealed consistently low similarity between LLM-generated continuations and original human texts, as measured by cosine similarity, perplexity, and BLEU scores. Including explicit personality traits significantly enhanced Llama-3.1-8B’s performance, particularly in BLEU scores.Further analysis of personality expression showed varying alignment patterns between LLMs and human texts. Specifically, Llama-3.1-8B exhibited higher extraversion but low agreeableness, while DeepSeek-R1-Distill-Llama-8B displayed dramatic personality shifts during its reasoning process, especially when prompted with personality traits, with all models consistently showing very low Openness.