Nele Mastracchio


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Team art-nat-HHU at SemEval-2024 Task 8: Stylistically Informed Fusion Model for MGT-Detection
Vittorio Ciccarelli | Cornelia Genz | Nele Mastracchio | Wiebke Petersen | Anna Stein | Hanxin Xia
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This paper presents our solution for subtask A of shared task 8 of SemEval 2024 for classifying human- and machine-written texts in English across multiple domains. We propose a fusion model consisting of RoBERTa based pre-classifier and two MLPs that have been trained to correct the pre-classifier using linguistic features. Our model achieved an accuracy of 85%.