This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Necati CihanCamgöz
Also published as:
Necati Cihan Camgöz,
Necati Cihan Camgoz
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We introduce the first highly multilingual speech and American Sign Language (ASL) comprehension dataset by extending BELEBELE. Our dataset covers 91 spoken languages at the intersection of BELEBELE and FLEURS, and one sign language (ASL). As a by-product we also extend the Automatic Speech Recognition Benchmark, FLEURS, by 20%. We evaluate 2M-BELEBELE dataset for both 5-shot and zero-shot settings and across languages, the speech comprehension accuracy is ≈ 10% average lower compared to reading comprehension.
A major impediment to the advancement of sign language translation (SLT) is data scarcity. Much of the sign language data currently available on the web cannot be used for training supervised models due to the lack of aligned captions. Furthermore, scaling SLT using large-scale web-scraped datasets bears privacy risks due to the presence of biometric information, which the responsible development of SLT technologies should account for. In this work, we propose a two-stage framework for privacy-aware SLT at scale that addresses both of these issues. We introduce SSVP-SLT, which leverages self-supervised video pretraining on anonymized and unannotated videos, followed by supervised SLT finetuning on a curated parallel dataset. SSVP-SLT achieves state-of-the-art finetuned and zero-shot gloss-free SLT performance on the How2Sign dataset, outperforming the strongest respective baselines by over 3 BLEU-4. Based on controlled experiments, we further discuss the advantages and limitations of self-supervised pretraining and anonymization via facial obfuscation for SLT.
This paper is a brief summary of the First WMT Shared Task on Sign Language Translation (WMT-SLT22), a project partly funded by EAMT. The focus of this shared task is automatic translation between signed and spoken languages. Details can be found on our website (https://www.wmt-slt.com/) or in the findings paper (Müller et al., 2022).
This paper presents the results of the Second WMT Shared Task on Sign Language Translation (WMT-SLT23; https://www.wmt-slt.com/). This shared task is concerned with automatic translation between signed and spoken languages. The task is unusual in the sense that it requires processing visual information (such as video frames or human pose estimation) beyond the well-known paradigm of text-to-text machine translation (MT). The task offers four tracks involving the following languages: Swiss German Sign Language (DSGS), French Sign Language of Switzerland (LSF-CH), Italian Sign Language of Switzerland (LIS-CH), German, French and Italian. Four teams (including one working on a baseline submission) participated in this second edition of the task, all submitting to the DSGS-to-German track. Besides a system ranking and system papers describing state-of-the-art techniques, this shared task makes the following scientific contributions: novel corpora and reproducible baseline systems. Finally, the task also resulted in publicly available sets of system outputs and more human evaluation scores for sign language translation.
Recent approaches to Sign Language Production (SLP) have adopted spoken language Neural Machine Translation (NMT) architectures, applied without sign-specific modifications. In addition, these works represent sign language as a sequence of skeleton pose vectors, projected to an abstract representation with no inherent skeletal structure. In this paper, we represent sign language sequences as a skeletal graph structure, with joints as nodes and both spatial and temporal connections as edges. To operate on this graphical structure, we propose Skeletal Graph Self-Attention (SGSA), a novel graphical attention layer that embeds a skeleton inductive bias into the SLP model. Retaining the skeletal feature representation throughout, we directly apply a spatio-temporal adjacency matrix into the self-attention formulation. This provides structure and context to each skeletal joint that is not possible when using a non-graphical abstract representation, enabling fluid and expressive sign language production. We evaluate our Skeletal Graph Self-Attention architecture on the challenging RWTH-PHOENIX-Weather-2014T (PHOENIX14T) dataset, achieving state-of-the-art back translation performance with an 8% and 7% improvement over competing methods for the dev and test sets.
This paper presents the results of the First WMT Shared Task on Sign Language Translation (WMT-SLT22).This shared task is concerned with automatic translation between signed and spoken languages. The task is novel in the sense that it requires processing visual information (such as video frames or human pose estimation) beyond the well-known paradigm of text-to-text machine translation (MT).The task featured two tracks, translating from Swiss German Sign Language (DSGS) to German and vice versa. Seven teams participated in this first edition of the task, all submitting to the DSGS-to-German track. Besides a system ranking and system papers describing state-of-the-art techniques, this shared task makes the following scientific contributions: novel corpora, reproducible baseline systems and new protocols and software for human evaluation. Finally, the task also resulted in the first publicly available set of system outputs and human evaluation scores for sign language translation.
Sign Language Recognition is a challenging research domain. It has recently seen several advancements with the increased availability of data. In this paper, we introduce the BosphorusSign22k, a publicly available large scale sign language dataset aimed at computer vision, video recognition and deep learning research communities. The primary objective of this dataset is to serve as a new benchmark in Turkish Sign Language Recognition for its vast lexicon, the high number of repetitions by native signers, high recording quality, and the unique syntactic properties of the signs it encompasses. We also provide state-of-the-art human pose estimates to encourage other tasks such as Sign Language Production. We survey other publicly available datasets and expand on how BosphorusSign22k can contribute to future research that is being made possible through the widespread availability of similar Sign Language resources. We have conducted extensive experiments and present baseline results to underpin future research on our dataset.
There are as many sign languages as there are deaf communities in the world. Linguists have been collecting corpora of different sign languages and annotating them extensively in order to study and understand their properties. On the other hand, the field of computer vision has approached the sign language recognition problem as a grand challenge and research efforts have intensified in the last 20 years. However, corpora collected for studying linguistic properties are often not suitable for sign language recognition as the statistical methods used in the field require large amounts of data. Recently, with the availability of inexpensive depth cameras, groups from the computer vision community have started collecting corpora with large number of repetitions for sign language recognition research. In this paper, we present the BosphorusSign Turkish Sign Language corpus, which consists of 855 sign and phrase samples from the health, finance and everyday life domains. The corpus is collected using the state-of-the-art Microsoft Kinect v2 depth sensor, and will be the first in this sign language research field. Furthermore, there will be annotations rendered by linguists so that the corpus will appeal both to the linguistic and sign language recognition research communities.