Nazik Dinctopal Deniz


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
When Men Bite Dogs: Testing Good-Enough Parsing in Turkish with Humans and Large Language Models
Onur Keleş | Nazik Dinctopal Deniz
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

This paper investigates good-enough parsing in Turkish by comparing human self-paced reading performance to the surprisal and attention patterns of three Turkish Large Language Models (LLMs), GPT-2-Base, GPT-2-Large, and LLaMA-3. The results show that Turkish speakers rely on good-enough parsing for implausible but grammatically permissible sentences (e.g., interpreting sentences such as ‘the man bit the dog’ as ‘the dog bit the man’). Although the smaller LLMs (e.g., GPT-2) were better predictors of human RTs, they seem to have relied more heavily on semantic plausibility than humans. Comparably, larger LLMs (e.g., LLaMA-3) tended to make more probabilistic parsing based on word order, exhibiting less good-enough parsing behavior. Therefore, we conclude that LLMs take syntactic and semantic constraints into account when processing thematic roles, but not to the same extent as human parsers.