Nayeli Suseth Bravo


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Empathy Prediction from Diverse Perspectives
Francine Chen | Scott Carter | Tatiana Lau | Nayeli Suseth Bravo | Sumanta Bhattacharyya | Kate Sieck | Charlene C. Wu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A person’s perspective on a topic can influence their empathy towards a story. To investigate the use of personal perspective in empathy prediction, we collected a dataset, EmpathyFromPerspectives, where a user rates their empathy towards a story by a person with a different perspective on a prompted topic. We observed in the dataset that user perspective can be important for empathy prediction and developed a model, PPEP, that uses a rater’s perspective as context for predicting the rater’s empathy towards a story. Experiments comparing PPEP with baseline models show that use of personal perspective significantly improves performance. A user study indicated that human empathy ratings of stories generally agreed with PPEP’s relative empathy rankings.