Navlika Singh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
When Big Models Train Small Ones: Label-Free Model Parity Alignment for Efficient Visual Question Answering using Small VLMs
Abhirama Subramanyam Penamakuri | Navlika Singh | Piyush Arora | Anand Mishra
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Vision-Language Models (L-VLMs) have demonstrated remarkable performance in various vision and language tasks, including Visual Question Answering (VQA). However, their high computational cost makes them impractical for resource-constrained settings and inference-heavy applications. In contrast, Small Vision-Language Models (S-VLMs) offer efficiency but suffer from a significant performance gap compared to their larger counterparts. In this work, we introduce the Model Parity Aligner (MPA), a novel framework designed to systematically improve S-VLMs by leveraging unlabeled images and effective knowledge transfer from L-VLMs. Instead of traditional knowledge distillation methods that rely on labeled training data, MPA employs a strategic parity-based approach that precisely identifies the knowledge disparities between S-VLMs and L-VLMs, and optimizes training by targeting only these disparities. We conduct extensive experiments on four diverse VQA benchmarks, namely TextVQA, ST-VQA, ChartQA, and OKVQA, each of which required specialized reasoning capabilities such as text recognition, chart interpretation, and commonsense and factual understanding. Our results demonstrate that MPA consistently enhances the performance of S-VLM on all benchmarks, reducing the performance gap while maintaining computational efficiency. We shall make our code and MPA-aligned models publicly available upon acceptance of this work.