Navid Nobani


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Contrastive Explanations of Text Classifiers as a Service
Lorenzo Malandri | Fabio Mercorio | Mario Mezzanzanica | Navid Nobani | Andrea Seveso
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

The recent growth of black-box machine-learning methods in data analysis has increased the demand for explanation methods and tools to understand their behaviour and assist human-ML model cooperation. In this paper, we demonstrate ContrXT, a novel approach that uses natural language explanations to help users to comprehend how a back-box model works. ContrXT provides time contrastive (t-contrast) explanations by computing the differences in the classification logic of two different trained models and then reasoning on their symbolic representations through Binary Decision Diagrams. ContrXT is publicly available at ContrXT.ai as a python pip package.