This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
NathanBrown
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
In this work we present Pula, a suite of bilingual language models proficient in both Setswana and English. Leveraging recent advancements in data availability and efficient fine-tuning, Pula 8B and Pula 14B outperform GPT-4o and Gemini 1.5 Pro on English-Setswana translation tasks and achieve state-of-the-art performance on Setswana reasoning tasks for their size. We release the weights for Pula 1B, 3B, 8B, and 14B as well as training logs and training and evaluation code. Alongside Pula, we release the largest-ever Setswana text corpus, Marothodi, and the first comprehensive Setswana instruction-tuning dataset, Medupi, consisting of reformatted datasets, translated corpora, and synthetic LLM-generated text. To accompany this data, we release the code used for dataset construction, formatting, filtering, and scraping. Last, we release two Setswana LLM-translated benchmarks, MMLU-tsn and GSM8K-tsn, to measure Setswana knowledge and reasoning capabilities.
As pretrained transformer language models continue to achieve state-of-the-art performance, the Natural Language Processing community has pushed for advances in model compression and efficient attention mechanisms to address high computational requirements and limited input sequence length. Despite these separate efforts, no investigation has been done into the intersection of these two fields. In this work, we provide an evaluation of model compression via knowledge distillation on efficient attention transformers. We provide cost-performance trade-offs for the compression of state-of-the-art efficient attention architectures and the gains made in performance in comparison to their full attention counterparts. Furthermore, we introduce a new long-context Named Entity Recognition dataset, GONERD, to train and test the performance of NER models on long sequences. We find that distilled efficient attention transformers can preserve a significant amount of original model performance, preserving up to 98.6% across short-context tasks (GLUE, SQUAD, CoNLL-2003), up to 94.6% across long-context Question-and-Answering tasks (HotpotQA, TriviaQA), and up to 98.8% on long-context Named Entity Recognition (GONERD), while decreasing inference times by up to 57.8%. We find that, for most models on most tasks, performing knowledge distillation is an effective method to yield high-performing efficient attention models with low costs.
Pain is the main symptom that patients present with to the emergency department (ED). Pain management, however, is often poorly done aspect of emergency care and patients with painful conditions can endure long waits before their pain is assessed or treated. To improve pain management quality, identifying whether or not an ED patient presents with pain is an important task and allows for further investigation of the quality of care provided. In this paper, machine learning was utilised to handle the task of automatically detecting patients who present at EDs with pain from retrospective data. Experimental results on a manually annotated dataset show that our proposed machine learning models achieve high performances, in which the highest accuracy and macro-averaged F1 are 91.00% and 90.96%, respectively.