This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
NataliaPonomareva
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We present an approach for generating differentially private synthetic text using large language models (LLMs), via private prediction. In the private prediction framework, we only require the output synthetic data to satisfy differential privacy guarantees. This is in contrast to approaches that train a generative model on potentially sensitive user-supplied source data and seek to ensure the model itself is safe to release.We prompt a pretrained LLM with source data, but ensure that next-token predictions are made with differential privacy guarantees. Previous work in this paradigm reported generating a small number of examples (<10) at reasonable privacy levels, an amount of data that is useful only for downstream in-context learning or prompting. In contrast, we make changes that allow us to generate thousands of high-quality synthetic data points, greatly expanding the set of potential applications. Our improvements come from an improved privacy analysis and a better private selection mechanism, which makes use of the equivalence between the softmax layer for sampling tokens in LLMs and the exponential mechanism. Furthermore, we introduce a novel use of public predictions via the sparse vector technique, in which we do not pay privacy costs for tokens that are predictable without sensitive data; we find this to be particularly effective for structured data.
We address the challenge of ensuring differential privacy (DP) guarantees in training deep retrieval systems. Training these systems often involves the use of contrastive-style losses, which are typically non-per-example decomposable, making them difficult to directly DP-train with since common techniques require per-example gradients. To address this issue, we propose an approach that prioritizes ensuring query privacy prior to training a deep retrieval system. Our method employs DP language models (LMs) to generate private synthetic queries representative of the original data. These synthetic queries can be used in downstream retrieval system training without compromising privacy. Our approach demonstrates a significant enhancement in retrieval quality compared to direct DP-training, all while maintaining query-level privacy guarantees. This work highlights the potential of harnessing LMs to overcome limitations in standard DP-training methods.
Recent advances in NLP often stem from large transformer-based pre-trained models, which rapidly grow in size and use more and more training data. Such models are often released to the public so that end users can fine-tune them on a task dataset. While it is common to treat pre-training data as public, it may still contain personally identifiable information (PII), such as names, phone numbers, and copyrighted material. Recent findings show that the capacity of these models allows them to memorize parts of the training data, and suggest differentially private (DP) training as a potential mitigation. While there is recent work on DP fine-tuning of NLP models, the effects of DP pre-training are less well understood: it is not clear how downstream performance is affected by DP pre-training, and whether DP pre-training mitigates some of the memorization concerns. We focus on T5 and show that by using recent advances in JAX and XLA we can train models with DP that do not suffer a large drop in pre-training utility, nor in training speed, and can still be fine-tuned to high accuracies on downstream tasks (e.g. GLUE). Moreover, we show that T5’s span corruption is a good defense against data memorization.
Recent advances in NLP often stem from large transformer-based pre-trained models, which rapidly grow in size and use more and more training data. Such models are often released to the public so that end users can fine-tune them on a task dataset. While it is common to treat pre-training data as public, it may still contain personally identifiable information (PII), such as names, phone numbers, and copyrighted material. Recent findings show that the capacity of these models allows them to memorize parts of the training data, and suggest differentially private (DP) training as a potential mitigation. While there is recent work on DP fine-tuning of NLP models, the effects of DP pre-training are less well understood it is not clear how downstream performance is affected by DP pre-training, and whether DP pre-training mitigates some of the memorization concerns. We focus on T5 and show that by using recent advances in JAX and XLA we can train models with DP that do not suffer a large drop in pre-training utility, nor in training speed, and can still be fine-tuned to high accuracy on downstream tasks (e.g. GLUE). Moreover, we show that T5s span corruption is a good defense against data memorization.
NLP approaches to automatic text adaptation often rely on user-need guidelines which are generic and do not account for the differences between various types of target groups. One such group are adults with high-functioning autism, who are usually able to read long sentences and comprehend difficult words but whose comprehension may be impeded by other linguistic constructions. This is especially challenging for real-world user-generated texts such as product reviews, which cannot be controlled editorially and are thus a particularly good applcation for automatic text adaptation systems. In this paper we present a mixed-methods survey conducted with 24 adult web-users diagnosed with autism and an age-matched control group of 33 neurotypical participants. The aim of the survey was to identify whether the group with autism experienced any barriers when reading online reviews, what these potential barriers were, and what NLP methods would be best suited to improve the accessibility of online reviews for people with autism. The group with autism consistently reported significantly greater difficulties with understanding online product reviews compared to the control group and identified issues related to text length, poor topic organisation, and the use of irony and sarcasm.