Nat Gillin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
One-Shot Prompt for Language Variety Identification
Nat Gillin
Proceedings of the Eleventh Workshop on NLP for Similar Languages, Varieties, and Dialects (VarDial 2024)

We present a one-shot prompting approach to multi-class classification for similar language identification with off-the-shelf pre-trained large language model that is not particularly trained or tuned for the language identification task. Without post-training or fine-tuning the model, we simply include one example per class when prompting the model and surprisingly the model to generate the language andlocale labels accordingly.

2023

pdf bib
Few-shot Spanish-Aymara Machine Translation Using English-Aymara Lexicon
Nat Gillin | Brian Gummibaerhausen
Proceedings of the Workshop on Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP)

This paper presents the experiments to train a Spanish-Aymara machine translation model for the AmericasNLP 2023 Machine Translation shared task. We included the English-Aymara GlobalVoices corpus and an English-Aymara lexicon to train the model and limit our training resources to train the model in a \textit{few-shot} manner.

2022

pdf bib
Is Encoder-Decoder Transformer the Shiny Hammer?
Nat Gillin
Proceedings of the Ninth Workshop on NLP for Similar Languages, Varieties and Dialects

We present an approach to multi-class classification using an encoder-decoder transformer model. We trained a network to identify French varieties using the same scripts we use to train an encoder-decoder machine translation model. With some slight modification to the data preparation and inference parameters, we showed that the same tools used for machine translation can be easily re-used to achieve competitive performance for classification. On the French Dialectal Identification (FDI) task, we scored 32.4 on weighted F1, but this is far from a simple naive bayes classifier that outperforms a neural encoder-decoder model at 41.27 weighted F1.