This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
NankaiLin
Also published as:
楠铠 林
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Large language models (LLMs) excel in various tasks but remain vulnerable to jailbreak attacks, where adversaries manipulate prompts to generate harmful outputs. Examining jailbreak prompts helps uncover the shortcomings of LLMs. However, current jailbreak methods and the target model’s defenses are engaged in an independent and adversarial process, resulting in the need for frequent attack iterations and redesigning attacks for different models. To address these gaps, we propose a Reverse Embedded Defense Attack (REDA) mechanism that disguises the attack intention as the “defense”. intention against harmful content. Specifically, REDA starts from the target response, guiding the model to embed harmful content within its defensive measures, thereby relegating harmful content to a secondary role and making the model believe it is performing a defensive task. The attacking model considers that it is guiding the target model to deal with harmful content, while the target model thinks it is performing a defensive task, creating an illusion of cooperation between the two. Additionally, to enhance the model’s confidence and guidance in “defensive” intentions, we adopt in-context learning (ICL) with a small number of attack examples and construct a corresponding dataset of attack examples. Extensive evaluations demonstrate that the REDA method enables cross-model attacks without the need to redesign attack strategies for different models, enables successful jailbreak in one iteration, and outperforms existing methods on both open-source and closed-source models.
The performance of multilingual language models (MLLMs) is notably inferior for low-resource languages (LRL) compared to high-resource ones, primarily due to the limited available corpus during the pre-training phase. This inadequacy stems from the under-representation of low-resource language words in the subword vocabularies of MLLMs, leading to their misidentification as unknown or incorrectly concatenated subwords. Previous approaches are based on frequency sorting to select words for augmenting vocabularies. However, these methods overlook the fundamental disparities between model representation distributions and frequency distributions. To address this gap, we introduce a novel Entropy-Consistency Word Selection (ECWS) method, which integrates semantic and frequency metrics for vocabulary augmentation. Our results indicate an improvement in performance, supporting our approach as a viable means to enrich vocabularies inadequately represented in current MLLMs.
Chinese Semantic Error Recognition (CSER) has always been a weak link in Chinese language processing due to the complexity and obscureness of Chinese semantics. Existing research has gradually focused on leveraging pre-trained models to perform CSER. Although some researchers have attempted to integrate syntax information into the pre-trained language model, it requires training the models from scratch, which is time-consuming and laborious. Furthermore, despite the existence of datasets for CSER, the constrained size of these datasets impairs the performance of the models. Thus, in order to address the difficulty posed by a limited sample set and the need of annotating samples with semantic-level errors, we propose a Pseudo-label Data Construction method for CSER (PDC-CSER), generating pseudo-labels for augmented samples based on perplexity and model respectively, which overcomes the difficulty of constructing pseudo-label data containing semantic-level errors and ensures the quality of pseudo-labels. Moreover, we propose a CSER method with the Dependency Syntactic Attention mechanism (CSER-DSA) to explicitly infuse dependency syntactic information only in the fine-tuning stage, achieving robust performance, and simultaneously reducing substantial computing power and time cost. Results demonstrate that the pseudo-label technology PDC-CSER and the semantic error recognition method CSER-DSA surpass the existing models
Recent advances in LLMs have enhanced AI capabilities, but also increased the risk posed by malicious requests, highlighting the need for effective LLM safeguards to detect such queries. Existing approaches largely rely on classifier-based methods that lack interpretability and perform poorly on low-resource languages. To address these limitations, we propose ConsistentGuard, a novel reasoning-based multilingual safeguard, which enhances explainability via reasoning and boosts knowledge transfer between languages through alignment. With only 1,000 training samples, our method demonstrates superior performance on three datasets across six languages, outperforming larger models trained with significantly more data, and exhibits strong interpretability and generalization ability. We also contribute a multilingual benchmark extension and release our code to support future research.
Recently, the field of language acquisition (LA) has significantly benefited from natural language processing technologies. A crucial task in LA involves tracking the evolution of language learners’ competence, namely language development assessment (LDA). However, the majority of LDA research focuses on high-resource languages, with limited attention directed toward low-resource languages. Moreover, existing methodologies primarily depend on linguistic rules and language characteristics, with a limited exploration of exploiting pre-trained language models (PLMs) for LDA. In this paper, we construct the IndoCL corpus (Indonesian Corpus of L2 Learners), which comprises compositions written by undergraduate students majoring in Indonesian language. Moreover, we propose a model for LDA tasks, which automatically extracts language-independent features, relieving laborious computation and reliance on specific language. The proposed model uses sequential information attention and similarity representation learning to capture the differences and common information from the first-written and second-written essays, respectively. It has demonstrated remarkable performance on both our self-constructed corpus and publicly available corpora. Our work could serve as a novel benchmark for Indonesian LDA tasks. We also explore the feasibility of using existing large-scale language models (LLMs) for LDA tasks. The results show significant potential for improving LLM performance in LDA tasks.
The effectiveness of contrastive learning technology in natural language processing tasks is yet to be explored and analyzed. How to construct positive and negative samples correctly and reasonably is the core challenge of contrastive learning. It is even harder to discover contrastive objects in multi-label text classification tasks. There are very few contrastive losses proposed previously. In this paper, we investigate the problem from a different angle by proposing five novel contrastive losses for multi-label text classification tasks. These are Strict Contrastive Loss (SCL), Intra-label Contrastive Loss (ICL), Jaccard Similarity Contrastive Loss (JSCL), Jaccard Similarity Probability Contrastive Loss (JSPCL), and Stepwise Label Contrastive Loss (SLCL). We explore the effectiveness of contrastive learning for multi-label text classification tasks by the employment of these novel losses and provide a set of baseline models for deploying contrastive learning techniques on specific tasks. We further perform an interpretable analysis of our approach to show how different components of contrastive learning losses play their roles. The experimental results show that our proposed contrastive losses can bring improvement to multi-label text classification tasks. Our work also explores how contrastive learning should be adapted for multi-label text classification tasks.
Trained on the large corpus, pre-trained language models (PLMs) can capture different levels of concepts in context and hence generate universal language representations. They can benefit from multiple downstream natural language processing (NLP) tasks. Although PTMs have been widely used in most NLP applications, especially for high-resource languages such as English, it is under-represented in Lao NLP research. Previous work on Lao has been hampered by the lack of annotated datasets and the sparsity of language resources. In this work, we construct a text classification dataset to alleviate the resource-scarce situation of the Lao language. In addition, we present the first transformer-based PTMs for Lao with four versions: BERT-Small , BERT-Base , ELECTRA-Small , and ELECTRA-Base . Furthermore, we evaluate them on two downstream tasks: part-of-speech (POS) tagging and text classification. Experiments demonstrate the effectiveness of our Lao models. We release our models and datasets to the community, hoping to facilitate the future development of Lao NLP applications.
In this paper, we report the solution of the team BERT 4EVER for the LT-EDI-2022 shared task2: Homophobia/Transphobia Detection in social media comments in ACL 2022, which aims to classify Youtube comments into one of the following categories: no,moderate, or severe depression. We model the problem as a text classification task and a text generation task and respectively propose two different models for the tasks. To combine the knowledge learned from these two different models, we softly fuse the predicted probabilities of the models above and then select the label with the highest probability as the final output. In addition, multiple augmentation strategies are leveraged to improve the model generalization capability, such as back translation and adversarial training. Experimental results demonstrate the effectiveness of the proposed models and two augmented strategies.