Nana Yu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Visual Representations of Temporal Relations between Events and Time Expressions in News Stories
Evelin Amorim | António Leal | Nana Yu | Purificação Moura Silvano | Alipio Mario Jorge
Proceedings of the 19th Linguistic Annotation Workshop (LAW-XIX-2025)

High-quality annotation is paramount for effective predictions of machine learning models. When the annotation is dense, achieving superior human labeling can be challenging since the most used annotation tools present an overloaded visualization of labels. Thus, we present a tool for viewing annotations made in corpora, specifically for temporal relations between events and temporal expressions, filling a gap in this type of tool. We focus on narrative text, which is a rich source for these types of elements.