Naimul Haque


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
the_linguists at BLP-2023 Task 1: A Novel Informal Bangla Fasttext Embedding for Violence Inciting Text Detection
Md. Tariquzzaman | Md Wasif Kader | Audwit Anam | Naimul Haque | Mohsinul Kabir | Hasan Mahmud | Md Kamrul Hasan
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)

This paper introduces a novel informal Bangla word embedding for designing a cost-efficient solution for the task “Violence Inciting Text Detection” which focuses on developing classification systems to categorize violence that can potentially incite further violent actions. We propose a semi-supervised learning approach by training an informal Bangla FastText embedding, which is further fine-tuned on lightweight models on task specific dataset and yielded competitive results to our initial method using BanglaBERT, which secured the 7th position with an f1-score of 73.98%. We conduct extensive experiments to assess the efficiency of the proposed embedding and how well it generalizes in terms of violence classification, along with it’s coverage on the task’s dataset. Our proposed Bangla IFT embedding achieved a competitive macro average F1 score of 70.45%. Additionally, we provide a detailed analysis of our findings, delving into potential causes of misclassification in the detection of violence-inciting text.