Nadine Andrew


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Leveraging Natural Language Processing and Clinical Notes for Dementia Detection
Ming Liu | Richard Beare | Taya Collyer | Nadine Andrew | Velandai Srikanth
Proceedings of the 5th Clinical Natural Language Processing Workshop

Early detection and automated classification of dementia has recently gained considerable attention using neuroimaging data and spontaneous speech. In this paper, we validate the possibility of dementia detection with in-hospital clinical notes. We collected 954 patients’ clinical notes from a local hospital and assign dementia/non-dementia labels to those patients based on clinical assessment and telephone interview. Given the labeled dementia data sets, we fine tune a ClinicalBioBERT based on some filtered clinical notes and conducted experiments on both binary and three class dementia classification. Our experiment results show that the fine tuned ClinicalBioBERT achieved satisfied performance on binary classification but failed on three class dementia classification. Further analysis suggests that more human prior knowledge should be considered.