This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
NaamaZwerdling
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large Language Model (LLM) agents hold promise for a flexible and scalable alternative to traditional business process automation, but struggle to reliably follow complex company policies. In this study we introduce a deterministic, transparent, and modular framework for enforcing business policy adherence in agentic workflows. Our method operates in two phases: (1) an offline buildtime stage that compiles policy documents into verifiable guard code associated with tool use, and (2) a runtime integration where these guards ensure compliance before each agent action. We demonstrate our approach on the challenging 𝜏-bench Airlines domain, showing encouraging preliminary results in policy enforcement, and further outline key challenges for real-world deployments.
Large language models (LLMs) are increasingly used in business dialogue systems but they also pose security and ethical risks. Multi-turn conversations, in which context influences the model’s behavior, can be exploited to generate undesired responses. In this paper, we investigate the use of off-the-shelf LLMs in conversational red-teaming settings, where an attacker LLM attempts to elicit undesired outputs from a target LLM. Our experiments address critical questions and offer valuable insights regarding the effectiveness of using LLMs as automated red-teamers, shedding light on key strategies and usage approaches that significantly impact their performance.Our findings demonstrate that off-the-shelf models can serve as effective red-teamers, capable of adapting their attack strategies based on prior attempts. Allowing these models to freely steer conversations and conceal their malicious intent further increases attack success. However, their effectiveness decreases as the alignment of the target model improves.
As large language models become more prevalent, their possible harmful or inappropriate responses are a cause for concern. This paper introduces a unique dataset containing adversarial examples in the form of questions, we call AttaQ, designed to provoke such harmful or inappropriate responses. We assess the efficacy of our dataset by analyzing the vulnerabilities of various models when subjected to it. Additionally, we introduce a novel automatic approach for identifying and naming vulnerable semantic regions — input semantic areas for which the model is likely to produce harmful outputs. This is achieved through the application of specialized clustering techniques that consider both the semantic similarity of the input attacks and the harmfulness of the model’s responses.Automatically identifying vulnerable semantic regions enhances the evaluation of model weaknesses, facilitating targeted improvements to its safety mechanisms and overall reliability.
Data balancing is a known technique for improving the performance of classification tasks. In this work we define a novel balancing-viageneration framework termed BalaGen. BalaGen consists of a flexible balancing policy coupled with a text generation mechanism. Combined, these two techniques can be used to augment a dataset for more balanced distribution. We evaluate BalaGen on three publicly available semantic utterance classification (SUC) datasets. One of these is a new COVID-19 Q&A dataset published here for the first time. Our work demonstrates that optimal balancing policies can significantly improve classifier performance, while augmenting just part of the classes and under-sampling others. Furthermore, capitalizing on the advantages of balancing, we show its usefulness in all relevant BalaGen framework components. We validate the superiority of BalaGen on ten semantic utterance datasets taken from real-life goaloriented dialogue systems. Based on our results we encourage using data balancing prior to training for text classification tasks.