This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MuyunYang
Also published as:
Mu-yun Yang,
MuYun Yang,
沐昀 杨
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Complex instruction-following with elaborate constraints is imperative for Large Language Models (LLMs). While existing methods have constructed data for complex instruction alignment, they all rely on a more advanced model, especially GPT-4, limiting their application. In this paper, we propose a Multi-granularity Self-Contrastive Training (MuSC) framework, to improve the complex instruction alignment without relying on a stronger model. Our method is conducted on both coarse and fine granularity. On coarse-granularity, we construct constraint-aware preference data based on instruction decomposition and recombination. On fine-granularity, we perform token-aware preference optimization with dynamic token-level supervision. Our method is evaluated on open-sourced models, and experiment results show our method achieves significant improvement on both complex and general instruction-following benchmarks, surpassing previous self-alignment methods.
Visual information has been introduced for enhancing machine translation (MT), and its effectiveness heavily relies on the availability of large amounts of bilingual parallel sentence pairs with manual image annotations. In this paper, we introduce a stable diffusion-based imagination network into a multimodal large language model (MLLM) to explicitly generate an image for each source sentence, thereby advancing the multimodel MT. Particularly, we build heuristic feedback with reinforcement learning to ensure the consistency of the generated image with the source sentence without the supervision of visual information, which breaks the high-cost bottleneck of image annotation in MT. Furthermore, the proposed method enables imaginative visual information to be integrated into text-only MT in addition to multimodal MT. Experimental results show that our model significantly outperforms existing multimodal MT and text-only MT, especially achieving an average improvement of more than 14 BLEU points on Multi30K and MSCOCO multimodal MT benchmarks.
Low-Rank Adaptation (LoRA) is currently the most commonly used Parameter-efficient fine-tuning (PEFT) method. However, it still faces high computational and storage costs to models with billions of parameters. Most previous studies have tackled this issue by using pruning techniques. Nonetheless, these efforts only analyze LoRA parameter features to evaluate their importance, such as parameter count, size, and gradient. In fact, the output of LoRA directly impacts the fine-tuned model. Preliminary experiments indicate that a fraction of LoRA possesses significantly high output values, substantially influencing the layer output. Motivated by the observation, we propose LoRA-drop. Concretely, LoRA-drop evaluates the importance of LoRA based on the LoRA output. Then we retain LoRA for important layers and the other layers share the same LoRA. We conduct abundant experiments with models of different scales on NLU and NLG tasks. Results demonstrate that LoRA-drop can achieve performance comparable to full fine-tuning and LoRA while retaining 50% of the LoRA parameters on average.
Over-correction is a critical issue for large language models (LLMs) to address Grammatical Error Correction (GEC) task, esp. for Chinese. This paper proposes a Chain-of-Task (CoTask) framework to reduce over-correction. The CoTask framework is applied as multi-task instruction tuning of LLMs by decomposing the process of grammatical error analysis to design auxiliary tasks and adjusting the types and combinations of training tasks. A supervised fine-tuning (SFT) strategy is also presented to enhance the performance of LLMs, together with an algorithm for automatic dataset annotation to avoid additional manual costs. Experimental results demonstrate that our method achieves new state-of-the-art results on both FCGEC (in-domain) and NaCGEC (out-of-domain) test sets.
Legal judgment prediction (LJP), which enables litigants and their lawyers to forecast judgment outcomes and refine litigation strategies, has emerged as a crucial legal NLP task. Existing studies typically utilize legal facts, i.e., facts that have been established by evidence and determined by the judge, to predict the judgment. However, legal facts are often difficult to obtain in the early stages of litigation, significantly limiting the practical applicability of fact-based LJP. To address this limitation, we propose a novel legal NLP task: legal fact prediction (LFP), which takes the evidence submitted by litigants for trial as input to predict legal facts, thereby empowering fact-based LJP technologies to make predictions in the absence of ground-truth legal facts. We also propose the first benchmark dataset, LFPBench, for evaluating the LFP task. Our extensive experiments on LFPBench demonstrate the effectiveness of LFP-empowered LJP and highlight promising research directions for LFP.
Word sense disambiguation (WSD) is a fundamental yet challenging task in natural language processing. In recent years, the advent of large language models (LLMs) has led to significant advancements in regular WSD tasks. However, most existing LLMs face two major issues that hinder their performance in WSD. Firstly, these models are often prone to misclassifying the correct meaning of an ambiguous word when confronted with contexts containing adversarial information. Secondly, there is a lack of sufficient adversarial WSD datasets, which severely limits the development and evaluation of adversarial WSD systems. To address these gaps, we propose a novel Multi-Agent Debate framework for Adversarial Word Sense Disambiguation (MADAWSD). The MADAWSD framework simulates a real-world debate environment where multiple agent roles, namely, the Debater, Moderator, Consensus-seeker, and Judge, engage in discussions about ambiguous words in the context of adversarial information. Through a collaborative mechanism among these agents, it achieves accurate WSD. Additionally, a novel dataset for Chinese adversarial WSD has been constructed, focusing on improving and evaluating the performance of WSD models in the Chinese language. Extensive experiments on both English and Chinese adversarial WSD datasets demonstrate that MADAWSD can seamlessly integrate with existing LLMs and significantly enhance their performance, showcasing broad generality and outstanding effectiveness.
Large language models (LLMs) have shown remarkable performance in general translation tasks. However, the increasing demand for high-quality translations that are not only adequate but also fluent and elegant. To assess the extent to which current LLMs can meet these demands, we introduce a suitable benchmark (PoetMT) for translating classical Chinese poetry into English. This task requires not only adequacy in translating culturally and historically significant content but also a strict adherence to linguistic fluency and poetic elegance. Our study reveals that existing LLMs fall short of this task. To address these issues, we propose RAT, a Retrieval-Augmented machine Translation method that enhances the translation process by incorporating knowledge related to classical poetry. Additionally, we propose an automatic evaluation metric based on GPT-4, which better assesses translation quality in terms of adequacy, fluency, and elegance, overcoming the limitations of traditional metrics.
Recently, there has been a growing trend of utilizing Large Language Model (LLM) to evaluate the quality of other LLMs. Many studies have fine-tuned judge models based on open-source LLMs for evaluation. While the fine-tuned judge models are claimed to achieve comparable evaluation capability with GPT-4, in this work, we conduct an empirical study of LLM-as-a-Judge. Our findings indicate that although the fine-tuned judge models achieve high performance on in-domain test sets, even surpassing GPT-4, they underperform GPT-4 across several dimensions, including generalizability, fairness and adaptability. We also reveal that the fine-tuned judge model inherently operates as a task-specific classifier, consequently imposing the limitations.
The remarkable understanding and generation capabilities of large language models (LLMs) have greatly improved translation performance. However, incorrect understanding of the sentence to be translated can degrade translation quality. To address this issue, we proposed a novel Iterative Bilingual Understanding Translation (IBUT) method based on the cross-lingual capabilities of LLMs and the dual characteristics of translation tasks. The cross-lingual capability of LLMs enables the generation of contextual understanding for both the source and target languages separately. Furthermore, the dual characteristics allow IBUT to generate effective cross-lingual feedback, iteratively refining contextual understanding, thereby reducing errors and improving translation performance. Experimental results showed that the proposed IBUT outperforms several strong comparison methods, especially being generalized to multiple domains (e.g., news, commonsense, and cultural translation benchmarks).
Large language models (LLMs) have achieved remarkable performance on knowledge graph question answering (KGQA) tasks by planning and interacting with knowledge graphs. However, existing methods often confuse tool utilization with knowledge reasoning, harming readability of model outputs and giving rise to hallucinatory tool invocations, which hinder the advancement of KGQA. To address this issue, we propose Memory-augmented Query Reconstruction for LLM-based Knowledge Graph Reasoning (MemQ) to decouple LLM from tool invocation tasks using LLM-built query memory. By establishing a memory module with explicit descriptions of query statements, the proposed MemQ facilitates the KGQA process with natural language reasoning and memory-augmented query reconstruction. Meanwhile, we design an effective and readable reasoning to enhance the LLM’s reasoning capability in KGQA. Experimental results that MemQ achieves state-of-the-art performance on widely used benchmarks WebQSP and CWQ.
Recently, large language models (LLMs) enhanced by self-reflection have achieved promising performance on machine transla004 tion. The key idea is guiding LLMs to generate translation with human-like feedback. However, existing self-reflection methods lack effective feedback information, limiting the translation performance. To address this, we introduce a DUAL-REFLECT framework, leveraging the dual learning of translation tasks to provide effective feedback, thereby enhancing the models’ self-reflective abilities and improving translation performance. The application of this method across various translation tasks has proven its effectiveness in improving translation accuracy and eliminating ambiguities, especially in translation tasks with low-resource language pairs.
Recently, there has been a trend of evaluating the Large Language Model (LLM) quality in the flavor of LLM-as-a-Judge, namely leveraging another LLM to evaluate the current output quality. However, existing judges are proven to be biased, namely they would favor answers which present better superficial quality (such as verbosity, fluency) while ignoring the instruction following ability. In this work, we propose systematic research about the bias of LLM-as-a-Judge. Specifically, for closed-source judge models, we apply calibration to mitigate the significance of superficial quality, both on probability level and prompt level. For open-source judge models, we propose to mitigate the bias by contrastive training, with curated negative samples that deviate from instruction but present better superficial quality. We apply our methods on the bias evaluation benchmark, and experiment results show our methods mitigate the bias by a large margin while maintaining a satisfactory evaluation accuracy.
The advent of large language models (LLMs) has spurred considerable interest in advancing autonomous LLMs-based agents, particularly in intriguing applications within smartphone graphical user interfaces (GUIs). When presented with a task goal, these agents typically emulate human actions within a GUI environment until the task is completed. However, a key challenge lies in devising effective plans to guide action prediction in GUI tasks, though planning have been widely recognized as effective for decomposing complex tasks into a series of steps. Specifically, given the dynamic nature of environmental GUIs following action execution, it is crucial to dynamically adapt plans based on environmental feedback and action history.We show that the widely-used ReAct approach fails due to the excessively long historical dialogues. To address this challenge, we propose a novel approach called Dynamic Planning of Thoughts (D-PoT) for LLM-based GUI agents.D-PoT involves the dynamic adjustment of planning based on the environmental feedback and execution history. Experimental results reveal that the proposed D-PoT significantly surpassed the strong GPT-4V baseline by +12.7% (34.66% → 47.36%) in accuracy. The analysis highlights the generality of dynamic planning in different backbone LLMs, as well as the benefits in mitigating hallucinations and adapting to unseen tasks. Code is available at https://github.com/sqzhang-lazy/D-PoT.
The proliferation of open-source Large Language Models (LLMs) underscores the pressing need for evaluation methods. Existing works primarily rely on external evaluators, focusing on training and prompting strategies. However, a crucial aspect – model-aware glass-box features – is overlooked. In this study, we explore the utility of glass-box features under the scenario of self-evaluation, namely applying an LLM to evaluate its own output. We investigate various glass-box feature groups and discovered that the softmax distribution serves as a reliable quality indicator for self-evaluation. Experimental results on public benchmarks validate the feasibility of self-evaluation of LLMs using glass-box features.
State-of-the-art translation Quality Estimation (QE) models are proven to be biased. More specifically, they over-rely on monolingual features while ignoring the bilingual semantic alignment. In this work, we propose a novel method to mitigate the bias of the QE model and improve estimation performance. Our method is based on the contrastive learning between clean and noisy sentence pairs. We first introduce noise to the target side of the parallel sentence pair, forming the negative samples. With the original parallel pairs as the positive sample, the QE model is contrastively trained to distinguish the positive samples from the negative ones. This objective is jointly trained with the regression-style quality estimation, so as to prevent the QE model from overfitting to monolingual features. Experiments on WMT QE evaluation datasets demonstrate that our method improves the estimation performance by a large margin while mitigating the bias.
Recently, Large Language Models (LLMs) have boosted the research in natural language processing and shown impressive capabilities across numerous domains, including machine translation evaluation. This paper presents our methods developed for the machine translation evaluation sub-task of the Eval4NLP 2023 Shared Task. Based on the provided LLMs, we propose a generation-based method as well as a probability-based method to perform evaluation, explore different strategies when selecting the demonstrations for in-context learning, and try different ensemble methods to further improve the evaluation accuracy. The experiment results on the development set and test set demonstrate the effectiveness of our proposed method.
Unsupervised domain adaptation of machine translation, which adapts a pre-trained translation model to a specific domain without in-domain parallel data, has drawn extensive attention in recent years. However, most existing methods focus on the fine-tuning based techniques, which is non-extensible. In this paper, we propose a new method to perform unsupervised domain adaptation in a non-parametric manner. Our method only resorts to in-domain monolingual data, and we jointly perform nearest neighbour inference on both forward and backward translation directions. The forward translation model creates nearest neighbour datastore for the backward direction, and vice versa, strengthening each other in an iterative style. Experiments on multi-domain datasets demonstrate that our method significantly improves the in-domain translation performance and achieves state-of-the-art results among non-parametric methods.
End-to-End speech translation usually leverages audio-to-text parallel data to train an available speech translation model which has shown impressive results on various speech translation tasks. Due to the artificial cost of collecting audio-to-text parallel data, the speech translation is a natural low-resource translation scenario, which greatly hinders its improvement. In this paper, we proposed a new adversarial training method to leverage target monolingual data to relieve the low-resource shortcoming of speech translation. In our method, the existing speech translation model is considered as a Generator to gain a target language output, and another neural Discriminator is used to guide the distinction between outputs of speech translation model and true target monolingual sentences. Experimental results on the CCMT 2019-BSTC dataset speech translation task demonstrate that the proposed methods can significantly improve the performance of the End-to-End speech translation system.
Neural models have achieved great success on the task of machine reading comprehension (MRC), which are typically trained on hard labels. We argue that hard labels limit the model capability on generalization due to the label sparseness problem. In this paper, we propose a robust training method for MRC models to address this problem. Our method consists of three strategies, 1) label smoothing, 2) word overlapping, 3) distribution prediction. All of them help to train models on soft labels. We validate our approach on the representative architecture - ALBERT. Experimental results show that our method can greatly boost the baseline with 1% improvement in average, and achieve state-of-the-art performance on NewsQA and QUOREF.
East Asian languages are thought to handle reference differently from languages such as English, particularly in terms of the marking of definiteness and number. We present the first Data-Text corpus for Referring Expressions in Mandarin, and we use this corpus to test some initial hypotheses inspired by the theoretical linguistics literature. Our findings suggest that function words deserve more attention in Referring Expressions Generation than they have so far received, and they have a bearing on the debate about whether different languages make different trade-offs between clarity and brevity.