This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MurielleFabre
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper describes a method of variable beam size inference for Recurrent Neural Network Grammar (rnng) by drawing inspiration from sequential Monte-Carlo methods such as particle filtering. The paper studies the relevance of such methods for speeding up the computations of direct generative parsing for rnng. But it also studies the potential cognitive interpretation of the underlying representations built by the search method (beam activity) through analysis of neuro-imaging signal.
Typological differences between English and Chinese suggest stronger reliance on salience of the antecedent during pronoun resolution in Chinese. We examined this hypothesis by correlating a difficulty measure of pronoun resolution derived by the activation-based ACT-R model with the brain activity of English and Chinese participants listening to a same audiobook during fMRI recording. The ACT-R model predicts higher overall difficulty for English speakers, which is supported at the brain level in left Broca’s area. More generally, it confirms that computational modeling approach is able to dissociate different dimensions that are involved in the complex process of pronoun resolution in the brain.
The current study examined the role of syntactic structure during pronoun resolution. We correlated complexity measures derived by the syntax-sensitive Hobbs algorithm and a neural network model for pronoun resolution with brain activity of participants listening to an audiobook during fMRI recording. Compared to the neural network model, the Hobbs algorithm is associated with larger clusters of brain activation in a network including the left Broca’s area.
Multiword expressions have posed a challenge in the past for computational linguistics since they comprise a heterogeneous family of word clusters and are difficult to detect in natural language data. In this paper, we present a fMRI study based on language comprehension to provide neuroimaging evidence for processing MWEs. We investigate whether different MWEs have distinct neural bases, e.g. if verbal MWEs involve separate brain areas from non-verbal MWEs and if MWEs with varying levels of cohesiveness activate dissociable brain regions. Our study contributes neuroimaging evidence illustrating that different MWEs elicit spatially distinct patterns of activation. We also adapt an association measure, usually used to detect MWEs, as a cognitively plausible metric for language processing.