This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MurhafFares
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper presents our results for the Arabic Financial NLP (AraFinNLP) shared task at the Second Arabic Natural Language Processing Conference (ArabicNLP 2024). We participated in the first sub-task, Multi-dialect Intent Detection, which focused on cross-dialect intent detection in the banking domain. Our approach involved fine-tuning an encoder-only T5 model, generating synthetic data, and model ensembling. Additionally, we conducted an in-depth analysis of the dataset, addressing annotation errors and problematic translations. Our model was ranked third in the shared task, achieving a F1-score of 0.871.
This paper outlines the process of training the AraT5-MSAizer model, a transformer-based neural machine translation model aimed at translating five regional Arabic dialects into Modern Standard Arabic (MSA). Developed for Task 2 of the 6th Workshop on Open-Source Arabic Corpora and Processing Tools, the model attained a BLEU score of 21.79% on the test set associated with this task.
In this paper, we empirically evaluate the utility of transfer and multi-task learning on a challenging semantic classification task: semantic interpretation of noun–noun compounds. Through a comprehensive series of experiments and in-depth error analysis, we show that transfer learning via parameter initialization and multi-task learning via parameter sharing can help a neural classification model generalize over a highly skewed distribution of relations. Further, we demonstrate how dual annotation with two distinct sets of relations over the same set of compounds can be exploited to improve the overall accuracy of a neural classifier and its F1 scores on the less frequent, but more difficult relations.
We summarize empirical results and tentative conclusions from the Second Extrinsic Parser Evaluation Initiative (EPE 2018). We review the basic task setup, downstream applications involved, and end-to-end results for seventeen participating teams. Based on in-depth quantitative and qualitative analysis, we correlate intrinsic evaluation results at different layers of morph-syntactic analysis with observed downstream behavior.