Muminah Khurram


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
NarrativeMiners at SemEval-2025 Task 10: Combating Manipulative Narratives in Online News
Muhammad Khubaib | Muhammad Shoaib Khursheed | Muminah Khurram | Abdul Samad | Sandesh Kumar
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)

Our team, Narrative Miners, participated in SemEval-2025 Task 10 to tackle the challenge of detecting manipulative narratives in online news, focusing on the Ukraine-Russia war and climate change. We worked on three key subtasks: classifying entity roles, categorizing narratives and subnarratives, and generating concise narrative explanations. Using transformer-based models like BART, BERT, GPT-2, and Flan-T5, we implemented a structured pipeline and applied data augmentation to enhance performance. BART-CNN proved to be our best-performing model, significantly improving classification accuracy and explanation generation. Despite challenges like dataset limitations and class imbalance, our approach demonstrated the effectiveness of hierarchical classification and multilingual analysis in combating online disinformation. We made use of different data augmentation techniques to cover the class imbalances present in the dataset. We had different evaluation metrics set for each subtask, specifically focusing on the need of that particular outcome. With this paper, we hope to play our part in mitigating the impact of harmful disinformation.