Muhammad Rifqi Fatchurrahman


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
A Shallow Neural Network for Native Language Identification with Character N-grams
Yunita Sari | Muhammad Rifqi Fatchurrahman | Meisyarah Dwiastuti
Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications

This paper describes the systems submitted by GadjahMada team to the Native Language Identification (NLI) Shared Task 2017. Our models used a continuous representation of character n-grams which are learned jointly with feed-forward neural network classifier. Character n-grams have been proved to be effective for style-based identification tasks including NLI. Results on the test set demonstrate that the proposed model performs very well on essay and fusion tracks by obtaining more than 0.8 on both F-macro score and accuracy.