Muhammad Arif


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Fida @DravidianLangTech 2024: A Novel Approach to Hate Speech Detection Using Distilbert-base-multilingual-cased
Fida Ullah | Muhammad Zamir | Muhammad Arif | M. Ahmad | E Felipe-Riveron | Alexander Gelbukh
Proceedings of the Fourth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

In the contemporary digital landscape, social media has emerged as a prominent means of communication and information dissemination, offering a rapid outreach to a broad audience compared to traditional communication methods. Unfortunately, the escalating prevalence of abusive language and hate speech on these platforms has become a pressing issue. Detecting and addressing such content on the Internet has garnered considerable attention due to the significant impact it has on individuals. The advent of deep learning has facilitated the use of pre-trained deep neural network models for text classification tasks. While these models demonstrate high performance, some exhibit a substantial number of parameters. In the DravidianLangTech@EACL 2024 task, we opted for the Distilbert-base-multilingual-cased model, an enhancement of the BERT model that effectively reduces the number of parameters without compromising performance. This model was selected based on its exceptional results in the task. Our system achieved a commendable Macro F1 score of 0.6369%.