Muhammad Arham Mirza


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
PakBBQ: A Culturally Adapted Bias Benchmark for QA
Abdullah Hashmat | Muhammad Arham Mirza | Agha Ali Raza
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

With the widespread adoption of Large Language Models (LLMs) across various applications, it is imperative to ensure their fairness across all user communities. However, most LLMs are trained and evaluated on Western centric data, with little attention paid to low-resource languages and regional contexts. To address this gap, we introduce PakBBQ, a culturally and regionally adapted extension of the original Bias Benchmark for Question Answering (BBQ) dataset. PakBBQ comprises over 214 templates, 17180 QA pairs across 8 categories in both English and Urdu, covering eight bias dimensions including age, disability, appearance, gender, socio-economic status, religious, regional affiliation, and language formality that are relevant in Pakistan. We evaluate multiple multilingual LLMs under both ambiguous and explicitly disambiguated contexts, as well as negative versus non negative question framings. Our experiments reveal (i) an average accuracy gain of 12% with disambiguation, (ii) consistently stronger counter bias behaviors in Urdu than in English, and (iii) marked framing effects that reduce stereotypical responses when questions are posed negatively. These findings highlight the importance of contextualized benchmarks and simple prompt engineering strategies for bias mitigation in low resource settings.