Mrinal Anand


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
CamPros at CASE 2022 Task 1: Transformer-based Multilingual Protest News Detection
Neha Kumari | Mrinal Anand | Tushar Mohan | Ponnurangam Kumaraguru | Arun Balaji Buduru
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

Socio-political protests often lead to grave consequences when they occur. The early detection of such protests is very important for taking early precautionary measures. However, the main shortcoming of protest event detection is the scarcity of sufficient training data for specific language categories, which makes it difficult to train data-hungry deep learning models effectively. Therefore, cross-lingual and zero-shot learning models are needed to detect events in various low-resource languages. This paper proposes a multi-lingual cross-document level event detection approach using pre-trained transformer models developed for Shared Task 1 at CASE 2022. The shared task constituted four subtasks for event detection at different granularity levels, i.e., document level to token level, spread over multiple languages (English, Spanish, Portuguese, Turkish, Urdu, and Mandarin). Our system achieves an average F1 score of 0.73 for document-level event detection tasks. Our approach secured 2nd position for the Hindi language in subtask 1 with an F1 score of 0.80. While for Spanish, we secure 4th position with an F1 score of 0.69. Our code is available at https://github.com/nehapspathak/campros/.