Moritz Miller


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
First-Step Advantage: Importance of Starting Right in Multi-Step Math Reasoning
Kushal Jain | Moritz Miller | Niket Tandon | Kumar Shridhar
Findings of the Association for Computational Linguistics: ACL 2025

Language models can solve complex reasoning tasks better by learning to generate rationales for their predictions. Often these models know how to solve a task but their auto-regressive decoding nature leads to incorrect results if started incorrectly. We observe that smaller models in particular, when corrected, can solve a task that they would otherwise struggle with. We demonstrate this phenomenon by using a larger model to guide smaller models, which leads to significantly improved performance (up to +24 points on the GSM8K dataset by 7B models). To assist smaller models in initiating the starting step, we propose QuestCoT, where a smaller model first asks how to start before proceeding with a chain of reasoning. On various multistep mathematical reasoning datasets over multiple smaller models, we show that getting the start right can lead to significant performance gains across all models (gains of up to +6 points on GSM8K, +9 on SVAMP, +5 on ASDiv, and +7 on MultiArith).