This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MoranBeladev
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We present HotelMatch-LLM, a multimodal dense retrieval model for the travel domain that enables natural language property search, addressing the limitations of traditional travel search engines which require users to start with a destination and editing search parameters. HotelMatch-LLM features three key innovations: (1) Domain-specific multi-task optimization with three novel retrieval, visual, and language modeling objectives; (2) Asymmetrical dense retrieval architecture combining a small language model (SLM) for efficient online query processing and a large language model (LLM) for embedding hotel data; and (3) Extensive image processing to handle all property image galleries. Experiments on four diverse test sets show HotelMatch-LLM significantly outperforms state-of-the-art models, including VISTA and MARVEL. Specifically, on the test set—main query type—we achieve 0.681 for HotelMatch-LLM compared to 0.603 for the most effective baseline, MARVEL. Our analysis highlights the impact of our multi-task optimization, the generalizability of HotelMatch-LLM across LLM architectures, and its scalability for processing large image galleries.
In high-stakes industrial NLP applications, balancing generation quality with speed and efficiency presents significant challenges. We address them by investigating two complementary optimization approaches: Medusa for speculative decoding and knowledge distillation (KD) for model compression. We demonstrate the practical application of these techniques in real-world travel domain tasks, including trip planning, smart filters, and generating accommodation descriptions. We introduce modifications to the Medusa implementation, starting with base pre-trained models rather than conversational fine-tuned ones, and developing a simplified single-stage training process for Medusa-2 that maintains performance while reducing computational requirements. Lastly, we present a novel framework that combines Medusa with knowledge distillation, achieving compounded benefits in both model size and inference speed. Our experiments with TinyLlama-1.1B as the student model and Llama-3.1-70B as the teacher show that the combined approach maintains the teacher’s performance quality while reducing inference latency by 10-20x.
Multi-label text classification is a critical task in the industry. It helps to extract structured information from large amount of textual data. We propose Text to Topic (Text2Topic), which achieves high multi-label classification performance by employing a Bi-Encoder Transformer architecture that utilizes concatenation, subtraction, and multiplication of embeddings on both text and topic. Text2Topic also supports zero-shot predictions, produces domain-specific text embeddings, and enables production-scale batch-inference with high throughput. The final model achieves accurate and comprehensive results compared to state-of-the-art baselines, including large language models (LLMs). In this study, a total of 239 topics are defined, and around 1.6 million text-topic pairs annotations (in which 200K are positive) are collected on approximately 120K texts from 3 main data sources on Booking.com. The data is collected with optimized smart sampling and partial labeling. The final Text2Topic model is deployed on a real-world stream processing platform, and it outperforms other models with 92.9% micro mAP, as well as a 75.8% macro mAP score. We summarize the modeling choices which are extensively tested through ablation studies, and share detailed in-production decision-making steps.