This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
MonicaSunkara
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We introduce Conversational Function-Calling Evaluation Through Turn-Level Interactions (CONFETTI), a conversational benchmark designed to evaluate the function-calling capabilities and response quality of large language models (LLMs). Current benchmarks lack comprehensive assessment of LLMs in complex conversational scenarios. CONFETTI addresses this gap through 109 human-simulated conversations, comprising 313 user turns and covering 86 APIs. These conversations explicitly target various conversational complexities, such as follow-ups, goal correction and switching, ambiguous and implicit goals. We perform off-policy turn-level evaluation using this benchmark targeting function-calling. Our benchmark also incorporates dialog act annotations to assess agent responses. We evaluate a series of state-of-the-art LLMs and analyze their performance with respect to the number of available APIs, conversation lengths, and chained function calling. Our results reveal that while some models are able to handle long conversations, and leverage more than 20+ APIs successfully, other models struggle with longer context or when increasing the number of APIs. We also report that the performance on chained function-calls is severely limited across the models. Overall, the top performing models onCONFETTI are Nova Pro (40.01%), Claude Sonnet v3.5 (35.46%) and Llama 3.1 405B (33.19%) followed by command-r-plus (31.18%) and Mistral-Large-2407 (30.07%).
Despite the rapid advancements in LLM agents, they still face the challenge of generating meaningful reflections due to inadequate error analysis and a reliance on rare successful trajectories, especially in complex tasks. In this work, we propose SAMULE, a new framework for self-learning agents powered by a retrospective language model that is trained based on Multi-Level Reflection Synthesis. It first synthesizes high-quality reflections across three complementary levels: Single-Trajectory Learning (micro-level) for detailed error correction; Intra-Task Learning (meso-level) to build error taxonomies across multiple trials of the same task, and Inter-Task Learning (macro-level) to extract transferable insights based on same typed errors from diverse task failures. Then we fine-tune a language model serving as the retrospective model to generate reflections during inference. We further extend our framework to interactive settings through a foresight-based reflection mechanism, enabling agents to proactively reflect and adapt during user interactions by comparing predicted and actual responses. Extensive experiments on three challenging benchmarks—TravelPlanner, NATURAL PLAN, and Tau-bench—demonstrate that our approach significantly outperforms reflection-based baselines. Our results highlight the critical role of well-designed reflection synthesis and failure-centric learning in building self-improving LLM agents.
Large language model (LLM) agents have evolved to intelligently process information, make decisions, and interact with users or tools. A key capability is the integration of long-term memory capabilities, enabling these agents to draw upon historical interactions and knowledge. However, the growing memory size and need for semantic structuring pose significant challenges. In this work, we propose an autonomous memory augmentation approach, MemInsight, to enhance semantic data representation and retrieval mechanisms. By leveraging autonomous augmentation to historical interactions, LLM agents are shown to deliver more accurate and contextualized responses. We empirically validate the efficacy of our proposed approach in three task scenarios; conversational recommendation, question answering and event summarization. On the LLM-REDIAL dataset, MemInsight boosts persuasiveness of recommendations by up to 14%. Moreover, it outperforms a RAG baseline by 34% in recall for LoCoMo retrieval. Our empirical results show the potential of MemInsight to enhance the contextual performance of LLM agents across multiple tasks.
Temporal reasoning in multi-session dialogues presents a significant challenge which has been under-studied in previous temporal reasoning benchmarks. To bridge this gap, we propose a new evaluation task for temporal reasoning in multi-session dialogues and introduce an approach to construct a new benchmark by augmenting dialogues from LoCoMo and creating multi-choice QAs. Furthermore, we present TReMu, a new framework aimed at enhancing the temporal reasoning capabilities of LLM-agents in this context. Specifically, the framework employs time-aware memorization through timeline summarization, generating retrievable memory by summarizing events in each dialogue session with their inferred dates. Additionally, we integrate neuro-symbolic temporal reasoning, where LLMs generate Python code to perform temporal calculations and select answers. Experimental evaluations on popular LLMs demonstrate that our benchmark is challenging, and the proposed framework significantly improves temporal reasoning performance compared to baseline methods, raising from 29.83 on GPT-4o via standard prompting to 77.67 via our approach and highlighting its effectiveness in addressing temporal reasoning in multi-session dialogues.
Recent works have demonstrated that incorporating search during inference can significantly improve reasoning capabilities of language agents. Some approaches may make use of the ground truth or rely on model’s own generated feedback. The search algorithm uses this feedback to then produce values that will update its criterion for exploring and exploiting various reasoning paths. In this study, we investigate how search and model’s self-feedback can be leveraged for reasoning tasks. First, we explore differences in ground-truth feedback and self-feedback during search for math reasoning. Second, we observe limitations in applying search techniques to more complex tasks like tool-calling and design domain-specific approaches to address these gaps. Our experiments reveal challenges related to generalization when solely relying on self-feedback during search. For search to work effectively, either access to the ground-truth is needed or feedback mechanisms need to be carefully designed for the specific task.
Large Language Models (LLMs) are powerful models for generation tasks, but they may not generate good quality outputs in their first attempt. Apart from model fine-tuning, existing approaches to improve prediction accuracy and quality typically involve LLM self-improvement / self-reflection that incorporate feedback from models themselves. Despite their effectiveness, these methods are hindered by their high computational cost and lack of scalability. In this work, we propose CERET, a method for refining text generations by considering semantic stability, entailment and inter-sample uncertainty measures. Experimental results show that CERET outperforms Self-consistency and Self-rerank baselines consistently under various task setups, by 1.6% in Rouge-1 for abstractive summarization and 3.5% in hit rate for question answering. Compared to LLM Self-rerank method, our approach only requires 9.4% of its latency and is more cost-effective.
Semi-parametric Nearest Neighbor Language Models (kNN-LMs) have produced impressive gains over purely parametric LMs, by leveraging large-scale neighborhood retrieval over external memory datastores. However, there has been little investigation into adapting such models for new domains. This work attempts to fill that gap and suggests the following approaches for adapting kNN-LMs — 1) adapting the underlying LM (using Adapters), 2) expanding neighborhood retrieval over an additional adaptation datastore, and 3) adapting the weights (scores) of retrieved neighbors using a learned Rescorer module. We study each adaptation strategy separately, as well as the combined performance improvement through ablation experiments and an extensive set of evaluations run over seven adaptation domains. Our combined adaptation approach consistently outperforms purely parametric adaptation and zero-shot (kNN-LM) baselines that construct datastores from the adaptation data. On average, we see perplexity improvements of 17.1% and 16% for these respective baselines, across domains.
Masked Language Models (MLMs) have proven to be effective for second-pass rescoring in Automatic Speech Recognition (ASR) systems. In this work, we propose Masked Audio Text Encoder (MATE), a multi-modal masked language model rescorer which incorporates acoustic representations into the input space of MLM. We adopt contrastive learning for effectively aligning the modalities by learning shared representations. We show that using a multi-modal rescorer is beneficial for domain generalization of the ASR system when target domain data is unavailable. MATE reduces word error rate (WER) by 4%-16% on in-domain, and 3%-7% on out-of-domain datasets, over the text-only baseline. Additionally, with very limited amount of training data (0.8 hours) MATE achieves a WER reduction of 8%-23% over the first-pass baseline.
Automatic speech recognition (ASR) systems in the medical domain that focus on transcribing clinical dictations and doctor-patient conversations often pose many challenges due to the complexity of the domain. ASR output typically undergoes automatic punctuation to enable users to speak naturally, without having to vocalize awkward and explicit punctuation commands, such as “period”, “add comma” or “exclamation point”, while truecasing enhances user readability and improves the performance of downstream NLP tasks. This paper proposes a conditional joint modeling framework for prediction of punctuation and truecasing using pretrained masked language models such as BERT, BioBERT and RoBERTa. We also present techniques for domain and task specific adaptation by fine-tuning masked language models with medical domain data. Finally, we improve the robustness of the model against common errors made in ASR by performing data augmentation. Experiments performed on dictation and conversational style corpora show that our proposed model achieves 5% absolute improvement on ground truth text and 10% improvement on ASR outputs over baseline models under F1 metric.