Mo’men Hamdy


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
AlexUNLP-BH at StanceEval2024: Multiple Contrastive Losses Ensemble Strategy with Multi-Task Learning For Stance Detection in Arabic
Mohamed Badran | Mo’men Hamdy | Marwan Torki | Nagwa El-Makky
Proceedings of the Second Arabic Natural Language Processing Conference

Stance detection, an evolving task in natural language processing, involves understanding a writer’s perspective on certain topics by analyzing his written text and interactions online, especially on social media platforms. In this paper, we outline our submission to the StanceEval task, leveraging the Mawqif dataset featured in The Second Arabic Natural Language Processing Conference. Our task is to detect writers’ stances (Favor, Against, or None) towards three selected topics (COVID-19 vaccine, digital transformation, and women empowerment). We present our approach primarily relying on a contrastive loss ensemble strategy. Our proposed approach achieved an F1-score of 0.8438 and ranked first in the stanceEval 2024 task. The code and checkpoints are availableat https://github.com/MBadran2000/Mawqif.git