Molly Moran


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Effective Architectures for Low Resource Multilingual Named Entity Transliteration
Molly Moran | Constantine Lignos
Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages

In this paper, we evaluate LSTM, biLSTM, GRU, and Transformer architectures for the task of name transliteration in a many-to-one multilingual paradigm, transliterating from 590 languages to English. We experiment with different encoder-decoder combinations and evaluate them using accuracy, character error rate, and an F-measure based on longest continuous subsequences. We find that using a Transformer for the encoder and decoder performs best, improving accuracy by over 4 points compared to previous work. We explore whether manipulating the source text by adding macrolanguage flag tokens or pre-romanizing source strings can improve performance and find that neither manipulation has a positive effect. Finally, we analyze performance differences between the LSTM and Transformer encoders when using a Transformer decoder and find that the Transformer encoder is better able to handle insertions and substitutions when transliterating.