Mojtaba Farmanbar


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Semantic search with domain-specific word-embedding and production monitoring in Fintech
Mojtaba Farmanbar | Nikki Van Ommeren | Boyang Zhao
Proceedings of the 28th International Conference on Computational Linguistics: System Demonstrations

We present an end-to-end information retrieval system with domain-specific custom language models for accurate search terms expansion. The text mining pipeline tackles several challenges faced in an industry-setting, including multi-lingual jargon-rich unstructured text and privacy compliance. Combined with a novel statistical approach for word embedding evaluations, the models can be monitored in a production setting. Our approach is used in the real world in risk management in the financial sector and has wide applicability to other domains.