Mohammed Rahaman


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Source Code is a Graph, Not a Sequence: A Cross-Lingual Perspective on Code Clone Detection
Mohammed Rahaman | Julia Ive
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)

Code clone detection is challenging, as sourcecode can be written in different languages, do-mains, and styles. In this paper, we arguethat source code is inherently a graph, not asequence, and that graph-based methods aremore suitable for code clone detection thansequence-based methods. We compare the per-formance of two state-of-the-art models: Code-BERT (Feng et al., 2020), a sequence-basedmodel, and CodeGraph (Yu et al., 2023), agraph-based model, on two benchmark data-sets: BCB (Svajlenko et al., 2014) and PoolC(PoolC, no date). We show that CodeGraphoutperforms CodeBERT on both data-sets, es-pecially on cross-lingual code clones. To thebest of our knowledge, this is the first work todemonstrate the cross-lingual code clone detec-tion showing superiority on graph-based meth-ods over sequence-based methods